
DevOps Benchmarking  
Study 2023

Table of contents

Table of contents 02

Executive summary 04

Introduction 07

About the survey 09

Results 10

Scoring distribution 10

Technical setup 11

Architecture 11

Infrastructure 12

Containerization 13

Orchestration tooling 14

Lead time 15

Deployment frequency 16

MTTR 17

Change failure rate 18

Configuration management 19

Application configuration 19

Standardization 20

Infrastructure configuration management 21

Handling of application configuration management and infrastructure provisioning 22

Separation of environment-specific and environment-agnostic configuration 23

Degree of self-service 24

Creation of new feature or preview environments 24

02 Table of contents | DevOps Benchmarking Study 2023

Deployment to development and staging 25

Provisioning infrastructure and managed services 26

Assignment of resources 28

Finding information 29

Bootstrapping an application 30

Key findings 31

Internal Developer Platforms correlate to DevOps success 31

Platforms enable developer self-service and improve developer experience 35

Dynamic Configuration Management is a best practice to prevent config drift 37

Platforms drive innovation in times of uncertainty 41

Conclusion 44

Appendix 46

Demographics 47

Imprint 49

About Humanitec 50

03 Table of contents | DevOps Benchmarking Study 2023

Executive summary

Today’s DevOps culture is accompanied by a growing interest in platform engineering.

This reflects a widespread need for engineering organizations to finally address the

original promise of DevOps; “you build it, you run it”. As such, and many other

industry experts named platform engineering a top strategic technology trend and are

watching it closely. The discipline sets out to drastically improve developer experience

in the cloud-native area, by letting teams build Internal Developer Platforms to enable

developer self-service. These platforms are designed as compelling products by

platform engineering teams to serve their customers, the developers. In short,

platforms are being built that finally enable the true essence of DevOps.

Some past studies indicate that Internal Developer Platform build and usage

correlates with higher DevOps evolution and performance

 and , , and the latest

. In this report

we wanted to dig deeper, and detect more patterns that indicate the key

differentiators between low and top performing engineering organizations.

For this reason we measured 1053 teams on their DORA metrics and how far they

follow best practices, and scored them against these standards. We asked questions

regarding the degree of developer self-service, developer experience, and platform

tooling; as well as their methodologies for managing app configs, infrastructure

management, and team setups.

Developers working in organizations with low or mediocre performance depend heavily

on Ops teams for simple DevOps tasks. This results in ticket ops when developers need

help deploying a new version of code, spinning up new environments, and provisioning

infrastructure and resources—which then need wiring up to their dependent apps. This

slows teams down and can make life miserable for developers and Ops. The same

occurs for teams that take a more freestyle approach. When developers have more

freedom with self-service capabilities that are not facilitated in a standardized way,

too many are afraid of screwing things up. The result? A broken DevOps setup that

causes employee burnout and toxic relationships between developers and Ops.

Gartner

(Puppet State of DevOps

Report 2020 2021 Humanitec DevOps Benchmarking Study 2021

Puppet State of DevOps Report, Platform Engineering Special Edition)

04 Executive summary | DevOps Benchmarking Study 2023

https://humanitec.com/blog/gartner-internal-developer-platforms-platform-engineering
https://www.puppet.com/resources/history-of-devops-reports#2020
https://www.puppet.com/resources/history-of-devops-reports#2020
https://www.puppet.com/resources/history-of-devops-reports#2021
https://humanitec.com/whitepapers/2021-devops-setups-benchmarking-report
https://www.puppet.com/resources/state-of-platform-engineering

When it comes to top performing teams, we identified several key patterns that set

them apart from low performing teams:

Top performing teams built an Internal Developer Platform that drives

DevOps success

93% of top performers use a platform built and maintained by a platform team. They

follow a Platform as a Product approach and are based on a mix of open source and

vendor software, glued together and built into the platform.

Top performings teams use Internal Developer Platforms that boost

developer experience and productivity

With a platform, top performing organizations enable developers to complete

DevOps tasks like the creation of new feature or PR environments (83.6%), deploy to

dev or staging environments (93%), and resource assignment to apps based on

golden paths and a standardized approach (85%). Developers can also bootstrap a

new app within less than two hours (53%) and complete all of these tasks entirely

independently. What’s more, they do so with a great developer experience and in a

confident manner without fear of screwing things up.

A new approach to config management

Top performing teams manage app configs in a standardized way across all apps

(82%), and separate environment-specific from environment-agnostic configs (81%).

They also manage to implement a clear separation of concerns, which lowers

developers cognitive load without restricting their access to underlying

technologies. This approach to app and infrastructure config management is a key

differentiator between top and low performing teams, and is commonly referred to

as Dynamic Configuration Management.

05 Executive summary | DevOps Benchmarking Study 2023

Platform engineering and Internal Developer Platforms drive innovation

in times of uncertainty

Internal Developer Platforms can improve developer experience, reduce developer

cognitive load, and enable self-service capabilities that drive productivity. All of

which can have a significant impact on overall business performance. This includes

shortening time to market (thus accelerating new revenue stream creation) while

minimizing security risks and optimizing cloud costs.

https://humanitec.com/blog/what-is-dynamic-configuration-management

06 Executive summary | DevOps Benchmarking Study 2023

Key recommendations

02

03

04

Start building your platform NOW; “

.” Almost every organization has major parts of a platform already in place

(think about CI/CD, IaC, cloud setup). The question is, whether you keep your

setup free-floating, or facilitate it in a standardized way by building an Internal

Developer Platform.

if you don’t build your platform, it will build

itself

If you start building an Internal Developer Platform, your platform team should

have a clear mission aligned with overall company goals. This could be the need

to speed up innovation cycles, reduce time to market, get cloud costs under

control, or mitigate security risks. So rather than simply replicating another

DevOps or Ops team solving individual or team problems, the platform team

should serve the entire organization.

Our study has shown that only low performing teams build Internal Developer

Platforms entirely on their own. Top performing teams use open source tools,

or a combination of proprietary software and open source tools, and treat their

platform as a product.

If you build an Internal Developer Platform make sure it supports Dynamic

Configuration Management, and has a Platform Orchestrator that enables

this. Avoid building a static platform, which has a high risk of creating new Ops

bottlenecks, config drift, and infrastructure sprawl.

01

Getting platform engineering right and building a dynamic Internal Developer Platform

enables teams to focus on what they’re good at. It can help define the lines between

developers and Ops, contribute to a well-oiled engineering setup, and subsequently

heal the relationship between teams; without putting developers and Ops back into

their silos.

https://humanitec.com/blog/what-is-an-internal-developer-platform
https://humanitec.com/blog/what-is-an-internal-developer-platform

07 Introduction | DevOps Benchmarking Study 2023

“DevOps is dead, long live Platform Engineering!” (Platformengineering.org) 

https://platformengineering.org/talks-library/devops-is-dead-long-live-platform-engineering

1

Alan Shimel: “Is DevOps Dead? I Don’t Think So!” (DevOps.com, October 4, 2022)  

https://devops.com/is-devops-dead-i-dont-think-so/

2

Luca Galante: “Why Gartner recommends Platform Engineering and building Internal Developer Platforms” (Humanitec, September 16, 2022)  

https://humanitec.com/blog/gartner-internal-developer-platforms-platform-engineering

3

David Groombridge: “Top 10 Strategic Technology Trends for 2023” (Gartner, October 17, 2023)  

https://www.gartner.com/en/articles/gartner-top-10-strategic-technology-trends-for-2023

4

Introduction

2022 has been an eventful year in DevOps to say the least. There was the launch of

PlatformCon, a virtual conference which delivered 78 talks to 6000+ platform engineers from

around the globe. , the largest online community of DevOps experts,

grew its Slack channel to 10000 active members. And platform engineering took the industry

by storm, pitched by some 1. Others like 2 disagreed, while

DevOps Twitter grew white hot with debates. Then Gartner put

3 and even named it as one of the 4.  

This was a much needed conversation in the DevOps industry. And one that produced some

great memes .

platformengineering.org

as the DevOps killer devops.com

platform engineering on their

Hype Cycle Top 10 Strategic Technology Trends for 2023

https://platformengineering.org/talks-library/devops-is-dead-long-live-platform-engineering
https://devops.com/is-devops-dead-i-dont-think-so/
https://humanitec.com/blog/gartner-internal-developer-platforms-platform-engineering
https://www.gartner.com/en/articles/gartner-top-10-strategic-technology-trends-for-2023
https://platformengineering.org/
https://platformengineering.org/talks-library/devops-is-dead-long-live-platform-engineering
https://devops.com/is-devops-dead-i-dont-think-so/
https://humanitec.com/blog/gartner-internal-developer-platforms-platform-engineering
https://humanitec.com/blog/gartner-internal-developer-platforms-platform-engineering
https://www.gartner.com/en/articles/gartner-top-10-strategic-technology-trends-for-2023

08 Introduction | DevOps Benchmarking Study 2023

Today’s DevOps culture is accompanied by an increasing interest in platform engineering,

which shows a hunger amongst engineering organizations to address the original promise of

DevOps: “You build it, you run it”. The goal of DevOps was to break down the silos between

developers and Ops, and enable faster software delivery. However, this quickly became a

distant dream for most developer teams, who were weighed down by their increasingly

complex cloud-native toolchains and home-grown delivery setups.

Aside from all the platform talk and our love of memes, it’s also important to consider how

platform engineering can translate to real business value. For example, how can Internal

Developer Platforms (IDPs) drive efficiency across the entire organization, and help

organizations reach their business goals? Later in this report we’ll take a more in-depth look at

how to accelerate innovation, improve team productivity, and attract and retain talented

developers with the right approach to platform engineering.

Platform engineering is the discipline of designing and building

toolchains and workflows that enable self-service capabilities for

software engineering organizations in the cloud-native era.  

Platform engineers provide an integrated product most often  

referred to as an Internal Developer Platform, or IDP, covering the

operational necessities of the entire lifecycle of an application5.

Luca Galante Product at Humanitec

Platform engineering guides organizations in the practice of delivering IDPs as products, finally

enabling developer self-service, a better developer experience (DevEx), and the ability to

innovate faster. As a result, we’re seeing increasing DevOps engineers considering taking the

platform engineering path. We’re also seeing more organizations realize this potential and by

adopting platform engineering, experience significant improvements that benefit the entire

business. This is underpinned by Puppet in a special platform engineering edition of their 

. According to the research, 93% of respondents say platform team

adoption is a step in the right direction. 94% agree the concept is helping their organization

better realize the benefits of DevOps, while 59% report greater productivity/efficiency as a

result of platform engineering6.

State of DevOps report

Luca Galante: “What is platform engineering?” (Platformengineering.org, January 13, 2023) 

https://platformengineering.org/blog/what-is-platform-engineering

5

“2023 State of Platform Engineering Report” (Puppet)  

https://www.puppet.com/resources/state-of-platform-engineering

6

https://www.puppet.com/resources/state-of-platform-engineering
https://platformengineering.org/blog/what-is-platform-engineering
https://www.puppet.com/resources/state-of-platform-engineering

About the survey

In 2022, we had hundreds of conversations with engineering teams. Our goal was to uncover

DevOps best practices and areas where the industry can improve. We dug into organizations’

degree of developer self-service, how teams manage configs and infrastructure, and their

overall performance.

From here, we built a hypothesis: That top performing teams would be the ones managing apps

and infrastructure config in a dynamic way. Proving this formed the basis of our study and as

you’ll see later, our assumption was correct.

For the 2023 report we asked from engineering organizations across NA, EMEA,

LATAM and APAC about their technical setup and performance metrics.

1053 teams

To present the results we first scored each teams’ answer against well-established best

practices and the four DORA metrics:

Using this calculation we built four segments ranging from top to low performing teams, and

used the results from each segment to explore our hypothesis.

09 About the survey | DevOps Benchmarking Study 2023

Job title split:

Infra, Sys, Ops, DevOps, SRE, Platform Engineering, Architects 38%

29%

33%

Engineers, Developers (incl. Seniors, Principals)

Management (Head of, Tech lead, Director, Manager), C-level

(CTO, CEO, CXO)

Deployment frequency

Change lead time

Change failure rate

Service production restoration time

Results

Scoring distribution

DevOps mountain of tears shows most teams are stuck with a mediocre setup

Let’s take a quick look at how our respondents fared. We see a very clean, normal distribution,

with a median value of 50 and an average DevOps maturity score of 49.88. Below are the exact

splits across the four segments we’ll analyze throughout the study:

10 Results | DevOps Benchmarking Study 2023

DevOps Benchmarking score

0

300

250

200

150

100

50

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-100

of respondents

Top performing teams 80-100, 5.84%

High performing teams 60-79, 20.53%

Medium performing teams 40-59, 43.70%

Low performing teams 0-39, 29.93%

Technical setup

Architecture

Top performing teams have a microservice architecture

It’s only the low performing teams that show monoliths are still on par with microservice

architectures. The latter progressively dominates the rest of the field, with almost 90% of top

performing teams using a microservice architecture.

11 Results | DevOps Benchmarking Study 2023

Loosely coupled Monolithic I don’ t know

The architecture of your applications is

Top performers High performers Medium performers Low performers

10.96%

18.49%

32.74%

41.64%

3.78% 3.32%

15.02%

89.04%

77.73%

63.94%

43.34%

While the cloud migration trend may not come as a surprise, as most engineering organizations

strive to modernize their infrastructure, the multicloud picture is more nuanced. There are

many good reasons to go multicloud (e.g. avoiding vendor lock-in), but the data seems to

indicate a potential negative impact on performance. Like most advanced implementations

and rollouts, multicloud can have marginal benefits. However in most cases, it can risk doing

more bad (Ops overhead) than good (diversification), especially for less experienced teams.

12 Results | DevOps Benchmarking Study 2023

On what infrastructure do you run?

0%

80%

60%

40%

20%

Public cloud Multi On Prem but migrating to public On Prem

69
.4

4%

62
.8

7%

54
.8

1%

32
.6

3%

32
.6

3%

12
.2

8%

27
.7

2%

19
.9

1%

8.
5%

16
.7

8%

13
.8

9%

18
.5

7%

6.
75

%

11
.8

1%

9.
72

%

6.
94

%

Top performers High performers Medium performers Low performers

Infrastructure

More organizations are moving to multicloud, but the impact on performance  

might be negative

Public cloud use dominates with 50.8% of the total share, a relatively stable result compared

to 49.6% in 2021. What’s interesting to track is the double trend of falling on-prem (25.3% to

17.8%) and rising multicloud setups (17.2% to 21%)7. Another 9% of respondents state they are

still on-prem but planning to migrate to cloud.

Humanitec: “2021 DevOps Setups: Benchmarking Study” 

https://humanitec.com/whitepapers/2021-devops-setups-benchmarking-report

7

https://humanitec.com/whitepapers/2021-devops-setups-benchmarking-report

In this context, a containerized service refers to services that are ready to run on a container

orchestration platform such as Kubernetes. In most cases this is a key element needed to run

apps at scale, which explains the high correlation between containerization and performance.

13 Results | DevOps Benchmarking Study 2023

What is the degree of containerization at your organization?

0%

80%

100%

60%

40%

20%

Most services are containerized Half of services are containerized Starting to migrate No migration planned

79
.4

5%

62
.5

%

47
.6

2%

27
.1

1%

32
.6

%

22
.3

4%

20
.1

8%

12
.2

4%

13
.3

6%

13
.7

%

4.
11

%

2.
74

% 13
.3

6%

19
.9

5%

17
.9

5%

10
.7

8%

Top performers High performers Medium performers Low performers

Containerization

Low performing teams lag behind on migrating to a containerized setup

No surprises here; 93.15% of top performing teams have containerized at least half of their

services (79.45% all services). While 54.95% of low performing teams have not even planned to

migrate, or have only just started the migration process.

When it comes to the smaller players we discover a wide range of tools in use including serverless

solutions like Lambda, Fargate, and ECS. Some teams are using PaaS-like solutions such as Heroku or

OpenShift and legacy tools like Mesosphere (D2IQ). None of these solutions exceeded 2% across any of

the four segments, and we were unable to measure any impact on performance.

14 Results | DevOps Benchmarking Study 2023

What is your orchestration tool of choice?

0%

80%

100%

60%

40%

20%

Kubernetes Docker Swarm None Other

78
.0

8%

69
.7

5%

68
.5

8%

63
.6

1%

9.
89

% 18
.7

1%

3.
54

% 15
.7

1%

5.
88

%

4.
11

%

17
.8

1%

2.
52

% 12
.1

7%

7.
82

%

21
.8

5%

Top performers High performers Medium performers Low performers

Orchestration tooling

Kubernetes is our respondents’ orchestration tool of choice

Speaking of orchestration tooling, Kubernetes continues to gain market share up from  

62.4% to 68.2%. While Docker Swarm fell from 14.3% to 9.5%, smaller players remain

approximately stable.

Orchestration tooling

Kubernetes
68.28%Other

14.06%

Docker Swarm
9.5%

None
5.6%

N/A
2.56%

15 Results | DevOps Benchmarking Study 2023

Lead time

Lead time refers to the time between code commit and deployment to production

58.90% of top performing teams report a lead time of minutes, with 26.03% at less than a day.

In comparison, 82.59% of low performing teams report a lead time of more than a day. 26.28%

say this is between a day and a week, 32.42% between a week and a month, and a staggering

23.89% take longer than a month from commit to production.

Lead time

0%

70%

60%

30%

40%

50%

20%

10%

Top performers High perfomers Medium performers Low performers

58
.9

%

31
.9

3%

26
.0

3%

35
.2

9%

18
.3

6%

10
.9

6%

19
.7

5%

31
.6

4%

26
.6

4%

10
.7

5%

25
.4

4% 32
.4

2%

32
.4

2% 10
.5

%

3.
98

%

23
.8

9%

1.
26

%

1.
33

%

6.
14

%

1.
37

%7.
51

%

19
.2

5%

3.
75

%

Minutes Less than one day Between one day  
and one week

Between one week

and one month

More than one 
month

I don’t know

Focusing on individual performance metrics, we looked at the classic four DORA metrics: Lead

time, deployment frequency, MTTR, and change failure rate. For more information on the

metrics as industry benchmarks, please check out and . Accelerate DevOps Research

https://itrevolution.com/product/accelerate/
https://www.devops-research.com/research.html

16 Results | DevOps Benchmarking Study 2023

67.12% of top performing teams deploy on demand. 17.81% of the same segment deploys

several times per day, totalling 84.93%. Not too far behind are the high performing teams, with

73.95% deploying on demand or several times per day. Medium performing teams stand at

49.56%, and low performing teams only at 17.75% with the majority (30.38%) deploying weekly.

Deployment frequency

Deployment frequency tracks how often teams deploy to production, and shows how quickly

engineering teams are able to fix bugs, update, or add new features.

Deployment frequency

0%

80%

40%

60%

20%

Top performers High perfomers Medium performers Low performers

67
.1

2%

43
.7

%

17
.8

1%

30
.2

5%

13
.5

0%

13
.7

0% 20
.1

7%

34
.5

1%

30
.3

8%

5.
46

%

11
.7

3%

25
.9

4%

3.
76

%

21
.8

4%

0.
42

%

0.
44

%

4.
10

%

1.
37

%

6.
83

%

36
.0

6%

10
.9

2%

On-demand Several times  
per day

Weekly Monthly A few times

per year

I don’t know

17 Results | DevOps Benchmarking Study 2023

Top performing teams report an MTTR of less than one hour (76.71%) or less than one day

(23.29%). Only 11.26% of low performing teams say it takes less than an hour, and 24.91% need

between a day and a week.

MTTR

MTTR represents how long on average an engineering organization needs to recover from a

system outage, and have all services up and running again.

MTTR

0%

80%

100%

60%

40%

20%

76
.7

1%

23
.2

9%

2.
10

%

9.
56

%

7.
30

%

24
.9

1%

39
.0

8%

55
.8

8%

11
.2

6%

36
.5

0%

52
.8

8%

2.
94

%

3.
32

%

54
.2

7%

Less than one hour Less than one day Between one day

and one week

I don't know

Top performers High perfomers Medium performers Low performers

18 Results | DevOps Benchmarking Study 2023

In this case we should have better framed the brackets, a lesson learned for next time when

we’ll take a more granular approach.

Change failure rate

Change failure rate indicates the percentage of failed deployments which require a complete

rollback to the previous state, or immediate bug fixes.

Change failure rate

0%

80%

100%

60%

40%

20%

94
.5

2%

5.
48

%

2.
05

%

1.
11

%

3.
32

%6.
14

%

14
.3

3%

7.
14

%

88
.6

6%

65
.5

3%

84
.5

1%

10
.8

4%

0.
84

%

3.
36

%

0.
22

%11
.9

5%

Under 15% 16-30% 31-45% More than
45%

I don't know

Top performers High perfomers Medium performers Low performers

Yes No

Do you store your application configurations in a version control system?

Top performers High performers Medium performers Low performers

0%

80%

100%

120%

1.37%
5.46%

15.40%

98.63%
94.54%

84.60%

67.06%

32.94%

60%

40%

20%

19 Results | DevOps Benchmarking Study 2023

Configuration management

Application configuration

Storing app confs in a version control system (VCS) is a widely adopted best practice

Storing app configs in a VCS is a widely adopted best practice across all segments. Only 33% of

low performing teams still don’t do it.

20 Results | DevOps Benchmarking Study 2023

Standardization

Top performing teams manage app config in a standardized way

While 82.19% of top performing teams manage their app config in a standardized way for all

apps, almost exactly the same number (81.50%) of low performing teams do not.

Organizations that try to standardardize config across their apps, such as by templating and

automation, are hugely outperforming those leaving it to each team to decide. Lack of

templating and standardization usually results in engineers inefficiently copying configs from

existing services. This often leads to config drift, or redundant and incorrect settings applied

to new services.

In a standardized way for all applications Individual per application

How do you manage application configuration?

Top performers High performers Medium performers Low performers

0%

80%

100%

17.81%

36.71%

60.50%

82.19%

63.29%

39.50%

18.50%

81.50%

60%

40%

20%

21 Results | DevOps Benchmarking Study 2023

Infrastructure configuration management

Storing infrastructure configs in a version control system (VCS) is a widely adopted

best practice

100% of top performing teams store their infrastructure config in a VCS, compared to 52.52%

of low performing teams who don’t.

It is an absolute must to have app and infrastructure config stored in a VCS. But this is only one

cornerstone, which actually presents another challenge. Let’s say an app has ten services,

each with a certain amount of infrastructure dependencies. This leads to a few hundred files if

your setup contains four different environments. With each deployment to one of those

environments, new versions of these files are generated, which very soon can leave you with

10k+ files if you deploy several times daily.

Yes No

Do you store your infrastructure configurations in
a version control system?

Top performers High performers Medium performers Low performers

0%

80%

100%

120%

4.62%

19.91%

100.00%
95.38%

80.09%

47.48%
52.52%60%

40%

20%

22 Results | DevOps Benchmarking Study 2023

Handling of application configuration management and  

infrastructure provisioning

For top performing teams, app config management (ACM) and infrastructure

provisioning go hand-in-hand

72.2% of top performing teams handle app configs in the same way as infrastructure

dependencies, while 50% of high performing teams report app configs are completely

separate from infrastructure provisioning. This is also common practice among low performing

teams, where close to 80% report app config is also isolated from infrastructure provisioning.

Handling ACM and infrastructure provisioning separately can be done by one or separate

teams.

The latter case may result in a ticket ops workflow, where Ops teams have to fulfill developer

requests manually. The big downside of this approach is its lack of scalability, and the

subsequent delays caused by developers waiting for Ops to answer their requests.

Configs are handled the same way as infrastructure dependencies for an application.

Application configs are completely separated from the provisioning of infrastructure.

How do you handle application configurations and
infrastructure provisioning?

Top performers High performers Medium performers Low performers

0%

80%

100%

27.78%

50.22%

66.03%
72.22%

49.78%

33.97%

20.09%

79.91%

60%

40%

20%

23 Results | DevOps Benchmarking Study 2023

02

03

Elimination of orphan infrastructure:  
It’s easier to spot unused resources when most infrastructure provisioned is

attached to a workload.

Better visibility: 
Teams can more easily identify and resolve issues with a complete view of the

entire application lifecycle, and its dependent infrastructure from

development to deployment.

Improved compliance: 
Organizations can better comply with regulations and standards, and keep

infrastructure sprawl to a minimum.

01

In contrast, handling ACM and infrastructure provisioning together in a standardized way has

several advantages:

Separation of environment-specific and environment-agnostic configuration

Separation of environment-specific and environment-agnostic configs distinguishes

top and low performing teams

Are strictly separated Are closely intermingled

Environment specific configurations and
environment agnostic configurations

Top performers High performers Medium performers Low performers

0%

80%

100%

18.57%

30.58%

47.15%

81.43%

69.42%

52.85%

33.15%

66.85%

60%

40%

20%

24 Results | DevOps Benchmarking Study 2023

Among the top performing teams, 81.4% report environment-specific configurations are

strictly separate from environment-agnostic configurations. Among low performing teams only

33.1% follow this best practice, which creates another key differentiator.

Creation of new feature or preview environments

Developers in top performing setups can create new feature or preview environments

on their own

Degree of self-service

Application configuration

Developer self-service is a key indicator of high performance, good team culture, and employee

satisfaction. This is because teams with a high degree of self-service can eliminate key person

dependencies, waiting times, and hence frustration for both Ops (no more ticket ops) and

developers (no bottlenecks). This is the essence of DevOps, as it accurately represents how

close an organization is to true “you build it, you run it”.

They can be self-served by developers

Can be created by developers but need to be
approved/signed off by an engineering manager

Environments are spun up by a dedicated Ops team

Which answer describes best how new feature or
preview environments are spun up?

Top performers High performers Medium performers Low performers

0%

80%

100%

9.59%
6.85%

18.38%

37.79%

59.45%

17.95%
19.48% 15.75%

83.56%

63.68%

42.72%

24.80%

60%

40%

20%

25 Results | DevOps Benchmarking Study 2023

The ability to spin up new features and preview environments on demand is a excellent proxy

for developer self-service. In 83.6% of top performing teams, developers are able to create

preview environments on the fly. For medium performing teams, already less than half (42.7%)

of developers have this degree of autonomy. Close to 40% depend on approval from an

engineering manager and 19.5% have to wait for Ops to provision it for them. Among low

performing teams only 24.8% are able to create new environments on their own.

We see a similar picture when looking at a developer’s ability to deploy to dev and staging

environments on their own. Close to 90% of top performing teams feel confident deploying

independently. Around 40% of medium performing teams struggle, either fearful of screwing

things up or because they are dependent on Ops to deploy (19.1%). Among low performing

teams, only 25.6% are able and confident enough to deploy. The rest are again too scared to do

so, or are dependent on Ops.

Deployment to development and staging

Reliance on Ops to deploy features might indicate lower performance

Who on your team is able to deploy to Dev and Staging?

Top performers High performers Medium performers Low performers

0%

80%

100%

18.44%

30.04%

1.68%

19.11%

44.32%

62.44%

25.64%

60%

40%

20% 10.96%
5.46%

89.04%92.86%

Everyone can autonomously deploy

Everyone can in theory deploy, but
they are scared of screwing things up

Only a handful of senior Ops know how to deploy

26 Results | DevOps Benchmarking Study 2023

Key person dependencies on Ops are not only a big issue when it comes to environment

creation, but for infrastructure provisioning too.

Among top performing teams there are two main solutions: The preferred option (56.2%) use

an Infrastructure as Code (IaC) solution such as Terraform, while the main alternative (32.9%) is

to have infrastructure provisioning baked into their deployment pipeline.

A less standardized and compliant approach is to allow developers to provision infrastructure

themselves via cloud consoles. At first glance this might feel like a good indicator of developer

self-service, but in reality is highly risky and error-prone.

Provisioning infrastructure and managed services

Low performing teams disproportionately rely on Ops to provision on a  

case-by-case basis

How do you provision infrastructure and managed services that
applications depend on? (e.g. databases, DNS names, etc.)

0%

80%

60%

40%

20%

56
.1

6%

54
.4

7%

36
.3

0%

9.
34

%

10
.1

2%

10
.1

2%

70
.4

3%

11
.4

2% 18
.4

9%

33
.7

9%

32
.8

8%

16
.1

7%

13
.1

9%

16
.1

7%

6.
85

%

4.
11

%

Top performers High performers Medium performers Low performers

Provisioning is managed as code (e.g. via versioned Terraform)

Provisioning is built into the deployment pipeline.

Devs have full access to do this themselves
(e.g. via cloud consoles)

Ops create them on a case by case basis

27 Results | DevOps Benchmarking Study 2023

Sören Martius “Lessons learned from 100s of Infrastructure as Code (IaC) setups” ()  Platformengineering.org

https://platformengineering.org/talks-library/infrastructure-as-code-setups

8

Highly  
error-prone

No review process, 
gradually diverging

environments

Difficult to  
identify and control  

“state drift”

Lack of audit trail,
rollbacks and  
version history

High human
dependency,  

time-consuming

Impossible to roll out
same configs to multiple

environments

Issues without “god
mode” person

No  
versioning

Resource- 
intensive

No  
reuse

Zero knowledge 
transfer

Inability 
to track

Cloud consoles, portals, and what’s commonly defined as a click-ops approach all have several

downsides. Teams working in a click-ops setup are slower and lack reusability, since they are

unable to roll out the same configs to multiple environments. Audit and rollbacks become very

difficult due to the lack of config versioning. And key person dependency risk is highest, with a

“god mode” admin often the only one who can understand the setup and replicate it8.

https://platformengineering.org/
https://platformengineering.org/talks-library/infrastructure-as-code-setups

28 Results | DevOps Benchmarking Study 2023

To be able to run, every service is dependent on a number of resources such as databases,

DNS, storage, or similar. It's often the case that teams want to connect the same resource to

different services across all environments (or vice versa). For example, you wouldn’t want to

run your eCommerce app in a testing environment with your real customer database, which is

also used for production.  

How resources are assigned to an app varies a lot across the segments. Close to 85% of top

performing teams enable their developers to self-serve such resources based on golden paths.

This means they likely have an Internal Developer Platform (IDP) or similar, and have designed

an easy way for engineers to self-serve resources while minimizing risk of screwing things up.

This keeps cognitive load low and helps create a great developer experience (DevEX).  

The alternatives are for developers to assign resources to apps in a freestyle way (this happens

most prominently amongst the high performing teams at 27.7%). Or once again to depend on

Ops which leads to Ops bottlenecks where developers write tickets and then simply wait. While

33.6% of the high performing teams are still in this situation, it’s worryingly prevalent for both

medium (65.3%) and low performing teams (82.7%).

Assignment of resources

Low performing teams still overwhelmingly rely on Ops to assign resources to apps

Who assigns resources such as database,
DNS or storage to an application?

Top performers High performers Medium performers Low performers

0%

80%

100%

6.85%

27.66%
21.63%

14.12%

33.62%

8.22%

65.35%

82.75%
84.93%

38.72%

13.02%

3.14%

60%

40%

20%

Developers based on “golden paths” (means self-
service without the possibility to mess up things)

Developers on their own (free style)

Ops team

29 Results | DevOps Benchmarking Study 2023

Overseeing all of these dependencies between apps and assigned resources can be

challenging, especially in larger organizations with more complex setups. We wanted to know

where engineers go to figure things out, for example, which database a particular service uses.

The differences between segments are again telling.

Top performing teams go straight to their version control system (VCS) (76.7%), or use a service

portal (17.81%). High performing teams are quite similar, with 65.52% using IaC or GitOps to

figure out dependencies, and 21.5% going through a developer portal. On the other hand, low-

performing teams need to ask their Ops or infrastructure team (35.4%) or look it up inside the

app due to hardcoded connections (22.7%).

Finding information

Low performing teams disproportionately rely on Ops to find information

You want to figure out which database a certain service
is using. Where would you look up that information?

0%

80%

100%

60%

40%

20%

VCS (IaC, GitOps)

I don’ t know where to get this info from

Inside the app (hardcoded)

Ask ops or infrastructure team

User interface / developer portal

Other

76
.7

1%

65
.5

2%

46
.7

9%

15
.3

7%

20
.1

8%

2.
75

% 14
.9

1%

19
.4

9%

22
.7

4%

12
.6

4%

9.
75

%

35
.3

8%

5.
60

%

21
.5

5%

2.
16

%

5.
17

%

4.
11

%

17
.8

1%

1.
37

%

Top performers High performers Medium performers Low performers

30 Results | DevOps Benchmarking Study 2023

A final indicator of the degree of self-service across organizations is how long it takes an

engineering team to bootstrap a new app, including all dependencies such as databases,

storage, DNS, etc—and deploy it.

The answers varied between less than two hours to more than one week. 53.4% of top

performing teams can achieve this in less than two hours, while 39.8% can achieve this within

one day. This is in contrast to low performing teams, who need up to one week (36.9%) or even

longer (31.1%) simply to spin up a new app.

Bootstrapping an application

Low performing teams disproportionately rely on Ops to find information

0%

40%

50%

60%

30%

20%

10%

Below 2 hours Up to one day Up to one week More than one week

53
.4

2%

39
.8

3%

25
.7

5%

39
.3

1%

12
.3

1% 19
.6

2%

36
.9

2%

31
.1

5%

25
.2

9%

9.
66

%

41
.9

5%

15
.2

5%

2.
97

%

41
.1

0%

5.
48

%

Top performers High performers Medium performers Low performers

How long does it take your team to initially bootstrap a new
application including all dependencies (like databases, storage,
DNS, etc.) and deploy it?

31 Key findings | DevOps Benchmarking Study 2023

Key findings

Internal Developer Platforms correlate to DevOps success

The correlation between the degree of developer self-service, config management best

practices, and how well teams perform based on DORA metrics becomes clear upon closer

look. Reducing lead time and increasing deployment frequency require a setup free from

bottlenecks caused by excessive ticket ops. And while MTTR largely remains an infrastructure

and SRE topic, change failure rate is a good indication of the quality of the code that has been

deployed, and how well app and infrastructure configs are managed.

Simple things should be simple, complex
things should be possible.

Alan Kay

Which answer describes best how DevOps tasks
are managed in your organization?

10% 20%0% 30% 40% 50% 60% 70% 80% 90% 100%

Top performers High performers Medium performers Low performers

Developer self-service is enabled by internal
platform tooling like an Internal Developer Platform
(IDP) that a platform team builds for the rest of the

engineering organization.

Developers are expected to perform most DevOps
tasks on their own. Many of them are overwhelmed

and senior engineers are constantly busy helping less
experienced developers.

We have a dedicated Ops engineer/team that executes
DevOps tasks. App developers are strictly separated

and dependent on Ops.

We use a PaaS-like solution which is supposed to

enable developer self-service but is hard to scale

and comes with a lot of restrictions (e.g. takes away

context and doesn’t allow in-depth configuration).

93.15%
38.36%

4.6%

6.85%

45.52%

20.69%

7.59%

42.3%
53.76%

1.88%

6.03%

6.39%

34.91%

37.97%

32 Key findings | DevOps Benchmarking Study 2023

To find out how DevOps tasks are managed, we asked respondents to choose which of the

following three answers best describes their current state:

A stunning 93.15% of top performing teams report using internal tooling. The same applies to

38.36% of high performing teams, in contrast to only 4.60% of medium and 1.88% of the low

performing teams who did the same.

If we focus on the medium performing teams, two patterns emerge. The first is that while only a

very low percentage of this segment have an IDP in place (4.60%), almost half (45.52%) operate

in a broken DevOps setup. Developers are expected to manage DevOps tasks independently,

but are completely overwhelmed and dependent on senior engineers.

The other pattern is that many medium performing teams (42.30%) still have a dedicated Ops

team to execute DevOps tasks. This way, developers are not overwhelmed with DevOps tasks,

but can’t self-serve either. In reality this often means that developers are blocked by a ticket

ops process that causes frustration, and results in a toxic relationship between developers

and Ops.

Low performing teams show a similar picture, but with a larger share relying on dedicated Ops

teams for DevOps tasks (53.76%)

02

03

04

Developer self-service is enabled by tooling like an Internal Developer Platform

(IDP), built by a platform team for the rest of the engineering organization.

Developers are expected to perform most DevOps tasks on their own. Many of

them are overwhelmed and senior engineers are constantly busy helping less

experienced developers.

We have a dedicated Ops engineer/team that executes DevOps tasks. App

developers are strictly separated and dependent on Ops.

We use a PaaS-like solution which is supposed to enable developer self-

service, but is hard to scale and comes with a lot of restrictions (e.g. removes

context and doesn’t allow in-depth config).

01

Also remarkable is that a “Heroku-like” experience (i.e. using a PaaS) is still a widely used

synonym for successfully enabling developer self-service. However, top performing teams

don’t use PaaS offerings at all and even among the remaining segments, only 6% to 8% do so.

For the top performing teams there is a near-even split between building IDPs with open-

source tools (41.8%) and open-source and commercial tools (38.8%). The gap here is still very

small, and it’s too early to reach a consensus.

So how do teams go about building IDPs?

Top performers: How did you
build your Internal Developer
Platform?

We built it mainly from open source tools

41.18%

We built that using open source tools as
well as commercial solutions

38.24%

We built it completely ourselves

16.18%

We adopted mainly proprietary solutions

2.94%

I don’ t know

1.47%

Mid performers: How did you
build your Internal Developer
Platform?

We built it mainly from open source tools

43.08%

We built that using open source tools as
well as commercial solutions

40%

We built it completely ourselves

16.92%

43.08%

40%

16.92%

41.18%

2.9% 1.47%

38.24%

16.18%

33 Key findings | DevOps Benchmarking Study 2023

What's interesting to see for medium and low performing teams, the lower the performance,

the higher the share of teams who tried building an IDP entirely by themselves. The takeaway

couldn’t be more apparent; don’t try to build everything from scratch and reinvent the wheel.

 Kaspar von Grünberg: “What is an Internal Developer Platform” (Humanitec, July 29, 2021)  

https://humanitec.com/blog/what-is-an-internal-developer-platform

9

Low performers: How did you build
your Internal Developer Platform?

We built it mainly from open source tools

60%

We built completely ourselves

40%
60%

40%

34 Key findings | DevOps Benchmarking Study 2023

What is an Internal Developer Platform?

While there is industry consensus that top performing organizations use IDPs to build golden

paths for their developers, there is still some confusion about what an IDP actually is.

An Internal Developer Platform (IDP) is the sum of all the tech and tools

that a platform engineering team binds together to pave golden paths for

developers. IDPs lower cognitive load across the engineering

organization and enable developer self-service, without abstracting away

context from developers or making the underlying tech inaccessible.

Well designed IDPs follow a Platform as a Product approach, where a

platform team builds, maintains and continuously improves the IDP,

following product management principles and best practices.9

Kaspar von Grünberg CEO at Humanitec

https://humanitec.com/blog/what-is-an-internal-developer-platform

According to Gartner, software engineering leaders should “Improve developer experience by

providing self-service, internal developer platforms — to reduce cognitive load and context

switching, and to abstract away underlying complexity.”11 Improving developer satisfaction of

course goes hand in hand with increasing productivity. Much like the broader employee

experience, a great DevEx frees up time for developers which allows them to focus on solving

complex problems. This in turn translates into higher performance and cost savings. And it’s

why accelerating development with the right approach to self-service is no longer a nice-to-

have; it’s a business imperative. In fact Gartner predicts that by 2025, 75% of organizations with

platform engineering teams will provide self-service, internal developer platforms to improve

developer experience and accelerate product innovation12. “And that by 2026, 80% of software

engineering organizations will establish platform teams as internal providers of reusable

services, components and tools for application delivery”.13 — Gartner

There’s no doubt that developer self-service is the engineering team's dream scenario. When

done right, it can help relieve frustration for both Ops and developers by enabling:

Platforms enable developer self-service and improve
developer experience
Let’s next look at how platforms enable developer self-service and a great developer

experience (DevEx), and how this differentiates top and low performing teams

Autonomous deployment with no

reliance on Ops

True “you build it, you run it” ability
Ops to shift from tasks to strategy

Strengthened security and improved compliance

Shorter time from commit to deploy

Internal developer portals serve as the interface through which developers can

discover and access internal developer platform capabilities.”10 - Manjunath

Bhat, Research VP, Software Engineering Practice, Gartner

Manjunath Bhat Research VP, Software Engineering Practice, Gartner

Manjunath Bhat: “A Software Engineering Leader’s Guide to Improving Developer Experience” (Gartner)” https://www.gartner.com/document/401745710

Manjunath Bhat, Arun Chandrasekaran, & Stephen White: “Cool Vendors in Platform Engineering for Improving Developer Experience” (Gartner, 6 October 2022) https://
humanitec.com/whitepapers/gartner-cool-vendors-platform-engineering

11

Manjunath Bhat, Arun Chandrasekaran, & Stephen White: “Cool Vendors in Platform Engineering for Improving Developer Experience” (Gartner, 6 October 2022) https://
humanitec.com/whitepapers/gartner-cool-vendors-platform-engineering

12

Gartner: “Top Strategic Technology Trends for 2023: Platform Engineering (17 October 2022) 
https://www.gartner.com/en/information-technology/insights/top-technology-trends

13

35 Key findings | DevOps Benchmarking Study 2023

Another common misconception is that IDPs are the same as developer portals. 

In a nutshell:

https://www.gartner.com/document/4017457
https://humanitec.com/whitepapers/gartner-cool-vendors-platform-engineering
https://humanitec.com/whitepapers/gartner-cool-vendors-platform-engineering
https://humanitec.com/whitepapers/gartner-cool-vendors-platform-engineering
https://humanitec.com/whitepapers/gartner-cool-vendors-platform-engineering
https://www.gartner.com/en/information-technology/insights/top-technology-trends

The issue is that in many organizations, developer self-service simply means taking a shift left

approach in handing DevOps tasks to developers, which are usually executed quite poorly. As

our research shows, a greater degree of developer self-service enabled by an IDP provides the

capability to spin up new environments, deploy, roll back, and make changes in the

architecture. All without the need to rely on Ops. While this sounds like developer heaven, it’s

important to focus on improving the Ops and developer relationship by ensuring a separation

of concerns, which we’ll discuss later in more detail. Essentially, both teams should be able to

work closely together while having differentiated roles.

To sum up, IDPs enable the creation of golden paths which help balance developer cognitive

load. They help ensure developers still have access to the underlying tech they need, and the

freedom to to perform in-depth configs. Developers should be able to choose the right

abstractions, and if you introduce an IDP, it shouldn’t break their existing workflows. But by

default, IDPs also shield away from this kind of complexity to help ensure developers are doing

the right thing—and don’t screw up. Enabling developer self-service allows you to implement a

McKinsey highlights that “a great DevEx can be

enabled by a platform that serves developers’ needs

across several elements”.16 From our research, top

performing teams can self-serve resources like

databases, DNS, and storage based on golden paths.

With platform standardization, you also have guard

rails in place that ensure your entire setup still works

and that deployment doesn’t completely fail, should

your developers make a mistake.

IDPs are about making it easier

for developers to build and

deliver software, while not

abstracting away the useful and

differentiated capabilities of the

underlying core services. 15

Self-service improves developer experience because it reduces process

inefficiencies and, in many cases, eliminates unnecessary processes. For

example, the need to raise a ticket to create a development database or stand

up a test environment can impede developer productivity and disrupt their

state of flow. 14

Manjunath Bhat: “A Software Engineering Leader’s Guide to Improving Developer Experience” (Gartner) https://www.gartner.com/document/401745714

Manjunath Bhat, Arun Chandrasekaran, & Stephen White: “Cool Vendors in Platform Engineering for Improving Developer Experience” (Gartner, 6 October 2022) 

https://humanitec.com/whitepapers/gartner-cool-vendors-platform-engineering

15

Thomas Delaet, Arun Gundurao, Ling Lau, Stephan Schneider, and Lars Schor: “Why your IT organization should prioritize developer experience” (McKinsey, June

6, 2022) https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/why-your-it-organization-should-prioritize-developer-experience

16

36 Key findings | DevOps Benchmarking Study 2023

https://www.gartner.com/document/4017457
https://humanitec.com/whitepapers/gartner-cool-vendors-platform-engineering
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/why-your-it-organization-should-prioritize-developer-experience

As we have seen, top performing teams manage their app config across the entire organization

in a standardized way. Our study also shows that these teams handle app configs the same

way as infrastructure dependencies, and manage to separate environment-specific from

environment-agnostic configuration. Top performing teams are also faster in creating new

environments. And they show a higher degree of self-service regarding deployments to

ephemeral feature or staging environments, the provisioning of infrastructure, and how to

assign this infrastructure based on golden paths.

In summary, these teams all follow a methodology commonly known as

, which is “used to structure the configuration of compute workloads.

Developers create workload specifications, describing everything their workloads need to  

run successfully.”18 In practice, this means that a workload (or service), and in sum applications,

depend on certain external resources and infrastructure, such as databases, DNS, or storage.

Workloads also run in different kinds of contexts (e.g. environments from dev to production)

where they depend on other resources. Workload specifications are then used “to  

dynamically create the configuration, to deploy the workload in a specific environment. With

DCM, developers do not need to define or maintain any environment-specific configuration  

for their workloads.”19

Dynamic Configuration

Management (DCM)

Dynamic Configuration Management is a best practice to
prevent config drift

Why static Internal Developer Platforms cause config drift

In contrast to a dynamic Internal Developer Platform (IDP) that enables DCM, most platforms

we see in the market today enable developers to deploy an updated image from stage to stage.

But only if the app infrastructure remains the same. This is because of the static config files

that are manually scripted against a set of static environments and infrastructure. In this

setup, static IDPs are prone to breaking or result in overhead, should teams need to perform

tasks such as rollbacks, change configs, or refactoring. In addition, the majority of tooling that’s

often built into static IDPs can solve single pain points, such as environment as a service. They

are also built into self-scripted workflows, which tends to cause shadow ops or a greater

reliance on Ops. The issue is that most of these tools cannot address the core issue plagued by

most delivery setups: A static way to manage both app and infrastructure configs.

separation of concerns into the entire organization without putting developers and Ops back into

their previous silos, thus helping you reach a higher stage in your DevOps evolution.

Chris Stephenson: “What is Dynamic Configuration Management?” (Humanitec, February 7, 2023) https://humanitec.com/blog/what-is-dynamic-configuration-management18

Chris Stephenson: “What is Dynamic Configuration Management?” (Humanitec, February 7, 2023) https://humanitec.com/blog/what-is-dynamic-configuration-management19

37 Key findings | DevOps Benchmarking Study 2023

https://humanitec.com/blog/what-is-dynamic-configuration-management
https://humanitec.com/blog/what-is-dynamic-configuration-management
https://humanitec.com/blog/what-is-dynamic-configuration-management
https://humanitec.com/blog/what-is-dynamic-configuration-management

Config drift happens when new workloads are created by copying the structure of a  

pre-existing workload. Teams customize these structures to meet their requirements which

over time, culminates in subtle configuration differences from workload to workload. The end

result is added complexity when performing bulk updates across workloads.

Separation of concerns in a dynamic setup

In a dynamic IDP setup, there is a clear separation of concerns. Although DCM does not 

 itself organize an engineering team, it offers a structure within which teams can work  

better together.

From a developer perspective, a dynamic IDP setup enables workload-centric

development.20 With a single workload specification, workloads can be deployed

simultaneously to all environments, with their dependent configuration and

resources. And since only one specification needs to be created per workload no

matter the number of environments, the risk of config drift is eliminated.

For platform engineers, since all infrastructure is automatically generated from

approved templates and modules, a dynamic IDP setup enables the delivery of a

consistent and predictable infrastructure. It also eliminates the need for ticket ops

and overburdening developers with infrastructure responsibilities, by enabling

Complexity

Exponentially growing complexity of configurations in static setup

App lifetime

of respondents
Individual changes/file

Taking such a non-standardized approach can also result in an exponential increase in

complexity and very often, config drift.

Susa Tünker “Why we advocate for workload-centric over infrastructure-centric development” (Score, November 22, 2023) 

https://score.dev/blog/workload-centric-over-infrastructure-centric-development

20

38 Key findings | DevOps Benchmarking Study 2023

https://score.dev/blog/workload-centric-over-infrastructure-centric-development

In practice it would look like this: Let’s say a workload needs a database. A static setup would

require some interaction between the developer and the DBA team. The developer would

manage connection string custody, which would likely contain credentials with secret

information. Without this interaction the DBA team can’t know if a developer needs a new

database. Whereas in a DCM setup, when a new database is needed, automated tooling can

notify the DBA team. Alternatively the entire process can be automated as and when required

by workloads, to provision databases at deployment.

Dynamic Configuration Management drives standardization by design

Another huge advantage of implementing a dynamic IDP setup is that it enables platform

engineering teams to enforce standardization by design. This approach aims to standardize

and automate infrastructure provisioning and config management. 

A dynamic IDP setup removes the need for developers to handle hundreds of config files,

instead enabling them to use just one file per service. The final config files and manifests are

then created based on the deployment context. (rated 7k+ stars on GitHub) is one

example of an open source workload specification, which in a very short period of time has

experienced massive uptake and interest amongst the platform engineering community. So

much so that it is now amongst the top 1% of largest repositories on GitHub (as measured  

by stars).

Score

Complexity

App lifetime

of respondents
Individual changes/file

Linear growing complexity of configurations in dynamic setup

engineers to build a self-service model with golden paths and sensible defaults. And

when it comes to keeping everything current and updated, a dedicated platform

team can maintain and update the templates.

39 Key findings | DevOps Benchmarking Study 2023

http://score.dev

The impact is stunning: compared to static setups, the number of config files is reduced 

by up to 95%. Through enforced standardization, the complexity grows linearly rather  

than exponentially.

More key benefits of Dynamic Configuration Management

In summary, DCM and standardization by design helps improve promotion between

environments, drives a better DevEx, and ultimately, enables engineering organizations to

foster a better way of working. Key benefits include:

While there are many ways to implement DCM in your IDP setup, the most efficient route is by

adopting a developer-centric and platform-agnostic workload specification like . When

paired with a like Humanitec, it’s possible to build your own dynamic IDP

in a very short amount of time.

Score

Platform Orchestrator

01 Improved developer productivity: Through self-service enablement and

separation of concerns, developers can focus on delivering their apps while the

platform team manages infrastructure and configuration.

02 Less developer cognitive load: Thanks to the tightly scoped workload

specification featuring simple syntax that’s easy to read and learn.

03 Increased velocity: Developers have more time to prioritize app delivery, while

the time to provision and configure infrastructure can be greatly reduced

which improves time-to-market.

04 Reduced infrastructure sprawl and config drift: Standardizing and automating

infrastructure provisioning and config management makes it easier to  

enforce standards, minimize risk of infrastructure sprawl, and reduce  

config drift.

05 Greater compliance with established standards: Thanks to consistency and

predictability across all infrastructure and environments.

40 Key findings | DevOps Benchmarking Study 2023

https://score.dev/
https://humanitec.com/blog/what-is-a-platform-orchestrator

Platforms drive innovation in times of uncertainty

This DevOps Benchmarking Study was published in early 2023, a time of much uncertainty

caused by the macroeconomic situation. Whether your organization’s priority is digital

transformation, new revenue streams, or responding faster to change, never has there been a

greater need to drive innovation and stay competitive.

To achieve this, enabling a great DevEx and increasing developer productivity will be a key

competitive advantage. This means recognizing the pivotal role platform engineers can play in

building IDPs that can help support this, and ultimately contribute to your organization's

overarching goals.

Due to frozen budgets, stagnation, high inflation rates, and impending recession in some

countries, the right efforts are needed to build a business case for your platform engineering

initiatives. This means understanding the top priorities that senior execs are concerned with,

and proving what business value a platform can offer. According to Lee Ditiangkin, Product

Manager at IBM,22 several key strategic goals should be included with an overview of how

platform engineering can support organizations to achieve them:

The companies that invest in shorter innovation cycles, faster TTM, and

shipping new features on time will outperform their competitors. It’s up to

you to demonstrate how an IDP will get your organization there: by

reducing cognitive load on developers, enabling them to self-serve what

they need to run their apps and services, driving standardization by

design, and improving the .21developer experience

Lee Ditiangkin Platform Product Manager

Accelerate digital transformation

Moving to a cloud-native setup can be incredibly complex, especially if your

organization has legacy systems to support. While Kubernetes adoption is a

Lee Ditiangkin: “Step One to Successfully Building Your Platform: Building It Together” (InfoQ, March 7, 2023) 

https://www.infoq.com/minibooks/platform-engineering-guide

21

Lee Ditiangkin: “Step One to Successfully Building Your Platform: Building It Together” (InfoQ, March 7, 2023) 

https://www.infoq.com/minibooks/platform-engineering-guide

22

41 Key findings | DevOps Benchmarking Study 2023

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/why-your-it-organization-should-prioritize-developer-experience
https://www.infoq.com/minibooks/platform-engineering-guide
https://www.infoq.com/minibooks/platform-engineering-guide

great solution for smaller teams with new projects, at scale this is a different story.

The additional developer cognitive load (caused by the need to adopt new

technologies) can stifle productivity. And there is a common misconception that

Kubernetes is a platform when in reality, it’s just the foundation. In this instance,

building an IDP can provide abstraction layers on top of Kubernetes, and help drive

digital transformation success.

Shorten time to market (TTM)

Including tangible business metrics such as TTM is integral to your IDP argument.  

For example, you could say building an IDP that enables developer self-service can

shorten TTM by X%, by increasing developer productivity and reducing time waiting

on Ops. Without an IDP developers may also struggle with executing architectural

application changes which hinders productivity for them and Ops, rendering your

organization unable to react fast to competitors.

Minimize security risks

There’s no doubt about the impact security and data breaches can have on brand

reputation and loss of market share. An IDP can help mitigate those risks, by driving

standardization that enforces security best practices. Further, the integration of

smart security tools will better place your organization to detect security

vulnerabilities in a fast, automated way.

Increase operational efficiency

Without an IDP your organization could face unnecessary outages or downtime  

due to half-scripted manual workflows. Not only do fewer outages equate to less

late-night calls and interruptions, they translate to better customer retention and

high availability.

Reduce cloud spend

An IDP can make it easier to manage your setup more efficiently, enabling small

changes such as the ability to detect and pause unused environments which can

help lower costs. A vendor-neutral cloud platform also makes it easier to switch

between different vendor offers, and capitalize on different incentives.

42 Key findings | DevOps Benchmarking Study 2023

https://www.infoq.com/articles/kubernetes-successful-adoption-foundation/

Attract and retain top talent

IDPs can help with talent acquisition and retention by improving DevEx. According to

Gartner23, investing heavily in better DevEx is the best way to safeguard developers’

creative work and the key to boosting productivity. This not only results in happier

engineers, it also helps your organization to innovate faster.

Regardless of which approach you take to building your business case, it’s essential to keep

DevEx at the forefront of your strategy. In doing so, developers will be better able to navigate

siloed systems, improve delivery speed, and increase process agility—all of which contributes

to greater business value.

Manjunath Bhat: “A Software Engineering Leader’s Guide to Improving Developer Experience” (Gartner) 

https://www.gartner.com/document/4017457

23

43 Key findings | DevOps Benchmarking Study 2023

https://www.gartner.com/document/4017457

44 Results | DevOps Benchmarking Study 2023

Conclusion

When it comes to the adoption of platform engineering practices, advanced engineering

organizations have been leading the way. However, as the discipline goes mainstream, we’re

now seeing this trickle down across the rest of the market.

Platform engineering finally enables true DevOps "you build it, you run it", removes cognitive

load on developers, and kills ticket ops and waiting times. In a world where tools and setup

complexity are ever-evolving, new stresses and strains are created daily for those building and

deploying software. This is where platform engineering comes into its own. Its real meaning

stands for a separation of concerns, and specialization that simply allows teams to focus on

what they’re good at. It can help define the lines between developers and Ops, drive

productivity, and subsequently heal the relationship between teams; without putting

developers and Ops back into their silos.

Through our research we found that:

01 IDPs boost DevOps success.

02 Platforms enable developer self-service and improve DevEx.

03 Dynamic Configuration Management (DCM) is the new hot thing.

04 IDPs drive innovation and contribute to overarching business goals.

Because of these potential capabilities, more and more organizations are building IDPs. For

those considering this route, we highly recommend choosing DCM over a static approach to

managing configurations. You should avoid building your platform from scratch, and instead

aim to use a combination of open source and proprietary tools to save you from reinventing the

wheel.

In the past, DevOps tended to focus on individual or team problems. It’s now essential that

platform engineering takes the broader company context into account. This presents an

excellent opportunity to reduce time to market and deliver high-speed innovation cycles; ;

ultimately, this discipline can help drive customer satisfaction, create real business value, and

boost the bottom line.

There’s no doubt 2022 was a huge year for platform engineering. But we predict even bigger

things for 2023 and beyond. This includes more comprehensive case studies, with platform

engineering initiatives already in high demand. We expect an increase in knowledge sharing for

45 Results | DevOps Benchmarking Study 2023

DevOps and platform tooling, as well as blueprints and reference architectures within the

community. And as awareness of the discipline expands, DevOps and platform roles will

continue growing in popularity. We also expect DevOps titles to change and more accurately

reflect evolving responsibilities; driven by a renewed industry focus to embrace platform

engineering, and create the best DevEx possible.

Stay tuned!

46 Appendix | DevOps Benchmarking Study 2023

Appendix

Team size

Up to 30

52.04%

Between 30 and 250

27.45%

More than 250

17.66%

I don’ t know

2.85%

52.04%

27.45%

17.66%

2.85%

Job titles
Other

23.11%

Engineers,Developers (incl.Seniors, Principals)

22.46%

Management (Headof, Tech lead,Director, Manager)

21.48%

DevOps, SRE, Platform Engineering

14.92%

Architect

8.52%

Infra, Sys, Ops

6.07%

Infra, Sys, Ops

3.44%

23.11%

22.46%

14.92%

8.52%

6.07%
3.44%

21.48%

Number of respondents

n=1053

47 Appendix | DevOps Benchmarking Study 2023

Infra, Sys, Ops 7.89%

19.40%

11.09%

29.21%

27.93%

4.48%

DevOps, SRE, Platform Engineering

Architect

Engineers, Developers (incl. Seniors, Principals)

Management (Head of, Tech lead, Director, Manager)

C-level (CTO, CEO, CXO)

EMEA 

48.7%
APAC 

21.9%

AMAERICAS 

29.5%

Regions

48 Appendix | DevOps Benchmarking Study 2023

How DevOps tasks
are managed

Without an IDP

Overall

Devs handle most
DevOps tasks

I don't know

Dedicate Ops
handles all tasks

With a PaaS

With an IDP

Deployment frequency

On- 
demand

Several 
times

per day

Weekly

47%

29%

33%

14%

16%

14%

6%

13%

23%

34%

28%

28%

28%

31%

29%

28%

26%

33%

35%

12%

13%

15%

8%

16%

9%

9%

8%

8%

16%

9%

2%

5%

1%

1%

16%

1%

3%

24% 18% 8% 3% 1%

Monthly Few 
times

per
year

?

Lead time MTTR Change failure rate

Mins < 1 day < 15%1 day -

1 week

16-30%< 1 hour

35%

19%

21%

14% 76%

20% 81%

19% 80%

12% 70%

18% 81%

8% 72%

20%

16%

14%

25%

29% 9%32%

26% 10%37%

28% 11%31%

26% 2%18%

28% 11%36%

34% 11%42%

22% 3%49%

22% 2%48%

23% 3%53%

14% 2%54%

26% 2%48%

23% 5%42%

10% 1%10%

9% 1%11%

9% 1%13%

12% 2%10%

10% 1%12%

8% 6%

7% 12%9%

3% 6%4%

1% 5%4%

20% 24%18%

3% 5%4%

3% 12%11%

24% 89%29% 7%52%17% 1%41%14% 4%5% 2%

1 week -

1 month

31-45%< 1 day> 1

month

>45%1 day - 
1 week

? ??

49 Imprint | DevOps Benchmarking Study 2023

© Copyright 2023 Humanitec GmbH

Contact details:

Humanitec GmbH 
Wöhlertstraße 12-13, 10115 Berlin, Germany 
Phone:

Humanitec Inc  
228 East 45th Street, Suite 9E, New York, NY 10017

E-mail:
Website:

CEO: Kaspar von Grünberg 
Registered at Amtsgericht Charlottenburg, Berlin: HRB 196818 B 
VAT-ID according to §27a UStG: DE318212407 
Responsible for the content of humanitec.com ref. § 55 II RStV: Kaspar von Grünberg

+49 30 6293-8516 

info@humanitec.com 
humanitec.com

tel:+49306293-8516
mailto:info@humanitec.com
https://www.humanitec.com

Humanitec’s Platform Orchestrator is the engine at the heart of a dynamic IDP. It lets platform

teams, from growing startups to enterprises, remove bottlenecks by letting them build golden

paths for developers. With a dynamic Internal Developer Platform, developers self-serve the

tech they need to deploy and operate their apps, driving productivity and velocity.

Before Humanitec, building dynamic IDPs was hard and very expensive. It required significant

budgets, talent and time. Humanitec makes this process much easier and efficient, while

keeping platform teams and developers flexible along the way.

Platform engineering is revolutionizing how enterprises build and run

their cloud-native setups. Humanitec is at the core of this revolution,

enabling teams to build Internal Developer Platforms (IDPs) and reach

true developer self-service.

Platform  
Orchestrator

50 About Humanitec | DevOps Benchmarking Study 2023

DevOps Benchmarking  
Study 2023

humanitec.com

https://humanitec.com/

