
Reference architecture of an Internal Developer Platform on AWS // 1

Reference architecture
of an Internal Developer
Platform on AWS

Reference architecture of an Internal Developer Platform on AWS // 2

Organizations today must innovate quickly and reduce time to market in order to

remain competitive. This requires transforming static CI/CD setups into modern

enterprise-grade Internal Developer Platforms (IDPs) that improve developer

productivity and increase Ops efficiency through standardization and automation.

Well-designed IDPs eliminate ticket-based workflows and minimize the repetitive

manual tasks that need to be performed under time constraints.

For developers, an IDP reduces cognitive load and DevOPs burnout and enables

them to self-serve everything they need to be productive. Improving the developer

experience leads to higher developer productivity, which ultimately results in a

shorter time to market.

Introduction

Introduction

Reference architecture of an Internal Developer Platform on AWS // 3From pain to value - why your platform matters

FROM PAIN TO VALUE - WHY YOUR PLATFORM MATTERS

Platform engineering addresses significant pain points experienced by both developers

and infrastructure/operations teams, ultimately driving measurable business impact. By

resolving these issues using the key principles and value drivers of platform engineering,

organizations can achieve desired business outcomes like improved DevEx, cost savings,

reduced churn or faster time to market.

The question is, how do you build an enterprise-grade IDP, and where do you start? As an

industry, we need to move beyond buzzwords and provide real-life examples of modern IDPs.

While every platform looks different, certain common patterns emerge. To simplify matters, we

have initiated a series of reference architecture whitepapers, where we walk through successful

patterns in detail. These reference architectures represent platforms that have been implemented

by community members and presented at Platform Engineering events or PlatformCon.

This whitepaper focuses on Convera’s reference architecture of their Internal Developer Platform.

Reference architecture of an Internal Developer Platform on AWS // 4Convera’s Internal Developer Platform

Convera’s Internal Developer Platform
Convera, a company rooted in traditional finance, embarked on a significant transformation to

become a leading-edge FinTech organization. This evolution was driven by the need to overcome

several critical challenges, including a rigid and risky waterfall release model, the demands of a

highly competitive market requiring modern technology, and the desire to be seen as a company

that values innovation over stagnation. This transformation was presented by Igor Kantor at

PlatformCon 2024, showcasing a remarkable blueprint for a Fintech enterprise. To meet these

challenges head-on, Convera embraced platform engineering as a core strategy. This approach

focused on three main pillars: streamlining development, empowering developers through

autonomy, and ensuring operational efficiency.

The key to implementing this philosophy was the construction of a best-practice-focused Internal

Developer Platform (IDP). The IDP, based on a well-defined reference architecture, aimed to

create a smooth, uninterrupted flow of work, from the developer's laptop to revenue generation

for customers. The architecture of this platform is detailed in the above diagram which shows

off the different control planes. By moving away from manual processes such as "click ops" or

"ticket ops," the platform sought to empower developers to deliver end-to-end value quickly and

efficiently. Furthermore, the platform needed to operate with high efficiency and optimized costs.

REFERENCE ARCHITECTURE OF AN INTERNAL DEVELOPER PLATFORM ON AWS

https://www.youtube.com/watch?v=dAIpoeSl754&t=2s
https://www.youtube.com/watch?v=dAIpoeSl754&t=2s

Reference architecture of an Internal Developer Platform on AWS // 5

"Platform engineering is truly about a fully automated digital supply

chain and the humans that interact with it."

Igor Kantor
Director of Software Engineering at Convera

10 proven best practices

10 PROVEN BEST PRACTICES

01

02

03

Build vs. buy vs blend

Apply well established architecture patterns

Everything as code

The market reached a maturity level where it doesn’t make sense anymore to build

everything from scratch. You should make a business case and do your ROI calculations as early

as possible. According to the 2023 study, the best-performing platform engineering teams blend

OSS with commercial vendor offerings but do not build everything from scratch. Check the

platform tooling landscape for inspiration.

With a three-tier architecture (presentation, application, data): start building from

the backend; do not simply put a developer portal as a presentation layer on top of your

existing setup and build additional logic into it. Build the house first, then the front door.

Consider code as the single source of truth which helps maintain transparency, increase reliability,

and simplify maintenance. An IDP that’s code-first at its core allows for disaster recovery,

versioning, and structured product development principles. This does not exclude further

interface offerings such as a UI (portal), CLI, or API.

04 Build golden paths over cages
Do not try to please everyone. To adapt to different situations, meet diverse needs, and benefit

from evolving technologies, staying open-minded is key. But your platform design should not try

to cover every technology on earth or convince every developer in a user base. Do not assume

that you will be able to please 100% of developers. Instead, consider achieving 80% a great win.

Platform engineering best practices emphasize a product mindset when building an Internal

Developer Platform (IDP). This approach is rooted in the understanding that a platform

should be developed with the end-user, usually an application developer, but also other key

stakeholders like security, I&O, architects and executives in mind. 10 best practices should

be followed when developing an IDP.

Reference architecture of an Internal Developer Platform on AWS // 610 proven best practices

06

07

08

09

10

Leave platform interface choice to the developer

Security from scratch

Measure from the beginning

Gain stakeholder buy-in

Think about adoption from the first day

To ensure adoption, give developers the freedom to use the interfaces they’re most

comfortable with and that best meet their needs. Provide the option to use an OSS

workload specification like Score, a portal (GUI), CLI, or API.

To get buy in, implement security best practices from the get-go. If the V1 of your platform

doesn’t fulfill security and compliance requirements and if there is no proof that the platform

will even support ensuring security and compliance by design, security teams will veto and

your platform initiative is dead before it could even properly start.

Measure success with hard numbers to support informed decisions and generate

stakeholder buy-in. Choose metrics wisely, considering both leading (e.g., automation and

complexity scores) and lagging indicators (e.g., DORA metrics). Track leading indicators in

non-production environments early on. Remember to include NPS scores for developer

satisfaction, as well as stability metrics, SLOs, and SLAs.

Make sure all stakeholders have a seat (besides the developers - your customers). From

security to compliance and legal teams, from architects to I&O teams, and important for

the funding of your platform engineering initiative: executives. Make sure you build a

platform team where important stakeholders are represented by heralds and the team

goals are aligned with those of your stakeholders.

If the platform is not used, it is dead. This is about internal marketing/evangelism.

Identify the right first team to onboard and make them advocates of your platform. They are

essential for platform success and developer adoption.

05 Take an 80/20 attitude to platforming
Do not try to please everyone. To adapt to different situations, meet diverse needs, and

benefit from evolving technologies, staying open-minded is key. But your platform design

should not try to cover every technology on earth or convince every developer in a user

base. Do not assume that you will be able to please 100% of developers. Instead, consider

achieving 80% a great win.

Reference architecture of an Internal Developer Platform on AWS // 7

The different areas of Convera’s platform architecture are organized as planes that cluster certain

functionalities. Let’s zoom in on the different planes and see what technologies fulfill each function

in each of them.

Under the term Developer Control Plane, you find the primary “interfaces” developers can choose

to use when interacting with the platform or applying any change. As discussed in the “proven

best practices” section, organizations should leave interface changes to the developer on a

workload-by-workload basis. We also recommend not breaking the developer's current workflow,

which is why we default to code wherever possible.

This plane is the platform users' primary configuration layer and interaction point. It harbors the

following components:

Architectural components

Developer Control Plane

Components used in this architecture

A Version Control System.VCS is a prominent example, but this can be any system that

contains two types of repositories:

Application source code

Platform source code, e.g. using Terraform

Workload specifications. The reference architecture uses Score.

A portal for developers to interact with. This can be Backstage or any other portal on the

market. This reference architecture uses the Humanitec Portal.

Architectural components

DEVELOPER CONTROL PLANE

https://developer.humanitec.com/score/overview/
http://Backstage

Reference architecture of an Internal Developer Platform on AWS // 8Architectural components

Following the best practice “everything as code” both the app and platform source code

are stored in Git. The platform source code represents the configuration of the platform and

is maintained using the IaC framework Terraform. Terraform is used for both managing the

Humanitec Resource Definitions using the Humanitec Terraform provider, and for configuring the

different automation systems. The primary interaction method for developers is designed to be

code-driven using the Workload spec Score, to describe the Workload and dependent Resources

in abstract terms. Git integrates with the IDE, the CI pipeline, and the portal using the GitLab API.

The portal layer offers a user interface on top of all platform capabilities that acts like a single

pane of glass, including shortcuts to scaffolding new services, metrics, service catalogs, and

additional self-service actions. The portal integrates with the VCS through its API, using plugins

where available, and equally to the Platform Orchestrator. It might also pull additional data directly

from the CI pipelines or project management systems like JIRA.

This plane is about building and storing the image, creating app and infra configs from the

abstractions provided by the developers, and deploying the final state. It’s where the domains of

developers and platform engineers meet.

This plane usually contains four tools:

Integration and Delivery Plane

Components used in this architecture

A CI pipeline. This can be GitLab or any CI tooling on the market.

The image registry holding your container images, in this case Amazon ECR.

A Platform Orchestrator, which in our example is the Humanitec Platform Orchestrator.

The CD system, which can be the Platform Orchestrator’s deployment capabilities as in this

example, an external system triggered by the Platform Orchestrator using pipelines, or a

setup in tandem with GitOps operators like Flux or ArgoCD.

INTEGRATION AND DELIVERY PLANE

https://registry.terraform.io/providers/humanitec/humanitec

Reference architecture of an Internal Developer Platform on AWS // 9

Igor describes the deployment pipeline as a key part of their streamlined software development

lifecycle (SDLC). The goal was to make the entire digital supply chain from a developer's laptop to

revenue generation as cost-efficient, smooth, and easy to manage as possible.

In summary, the deployment pipeline is fully automated and aims to provide a streamlined

experience for developers, removing the complexity of infrastructure management and enabling

them to deliver value quickly and efficiently. The system ensures both speed and quality by

incorporating continuous testing and observability.

Architectural components

There are two key aspects to highlight here:

Developer self-service: The aim is to enable developers to deliver end-to-end solutions

without needing to interact with other teams (like DevOps or Cloud Engineering). By using

Score (as part of the Developer Control Plane), developers can request the necessary

resources themselves.

Platform Orchestration: The Humanitec Platform Orchestrator is invoked to handle the

actual deployment into the Kubernetes (EKS) cluster. The developers do not have to be

involved with the actual deployment, which is fully automated. Based on Resource Definitions

written in Terraform, owned by the platform engineering team, and Score files, which

developers use to request resources their workloads depend on, the Platform Orchestrator

creates a Resource Graph which defines the order in which resources should be provisioned

during a deployment.

Using tools like Datadog, the Monitoring and Logging Plane focuses on the stability of the system,

tracking uptime, SLOs, and using RED metrics.

Monitoring and Logging Plane

MONITORING AND LOGGING PLANE

https://humanitec.com/blog/understand-humanitecs-resource-graph-in-detail

Reference architecture of an Internal Developer Platform on AWS // 10

Convera’s Security Plane is designed to ensure that all sensitive information is managed securely

and consistently across the platform. The core component of this plane is AWS Secrets Manager,

which stores critical configuration information like database passwords, API keys, and TLS

certificates. Access to these secrets is tightly controlled, with EKS pods granted access only to

the secrets they require, minimizing the potential impact of security breaches.

This plane is where the actual infrastructure exists and includes clusters, databases, storage, or

DNS services. The configuration of the Resources is managed by the Platform Orchestrator which

dynamically creates app and infrastructure configurations with every deployment and creates,

updates, or deletes dependent Resources as required.

Security Plane

Resource Plane

Architectural components

SECURITY PLANE

RESOURCE PLANE

Reference architecture of an Internal Developer Platform on AWS // 11

The reference architecture we presented in this whitepaper offers a blueprint for building an

Internal Developer Platform (IDP) on AWS with GitLab, Humanitec, Terraform, and Datadog. It aims

to tackle challenges like slow time to market, operational inefficiency, poor developer productivity,

and lack of standardization.

As Igor pointed out in his PlatformCon talk, Convera undertook a transformation to evolve into a

leading-edge FinTech organization by embracing platform engineering. This shift was driven by the

necessity to move away from outdated practices and promote innovation.

To achieve this, Convera concentrated on three key objectives: streamlining development,

empowering developers, and ensuring operational efficiency. Platform engineering, specifically

through building an internal developer platform (IDP), was implemented to realize these principles.

Streamlining the software development lifecycle (SDLC) involved implementing continuous integration

and continuous delivery (CI/CD), Infrastructure as Code (IaC), and continuous quality assurance, with

feature branch testing to safeguard shared environments. Empowering developers was facilitated

by removing complexity and enabling self-service using tools like the Score. To achieve operational

efficiency, Convera concentrated on using cloud-native technologies, such as containerization, which

enabled immutable deployments and the ability to scale with load, while also ensuring that cost was

considered as a key fitness function. Ultimately, platform engineering at Convera aimed to establish a

fully automated digital supply chain, emphasizing seamless workflows, empowered developers, and

operational efficiency, thereby treating the platform as a product and developers as valued customers.

Convera’s transformation highlights the power of platform engineering in streamlining development,

empowering developers, and driving operational efficiency. By embracing cloud-native technologies,

Convera's reference architecture: A blueprint for Internal
Developer Platforms

Convera's reference architecture: A blueprint for
Internal Developer Platforms

https://www.youtube.com/watch?v=dAIpoeSl754
https://score.dev/

Reference architecture of an Internal Developer Platform on AWS // 12

self-service tooling, and automation, they built an Internal Developer Platform that accelerates

innovation while maintaining cost efficiency. If you’re looking to achieve the same results as

Convera and build a strong foundation in platform engineering principles, the Platform Engineering

Fundamentals course is a great place to start. At the same time, for organizations looking to upskill

entire teams and implement these best practices at scale, our Trainings provide tailored programs

to help you build, optimize, and manage high-performing platforms effectively.

https://platformengineering.org/fundamentals
https://platformengineering.org/fundamentals
https://platformengineering.org/trainings

Reference architecture of an Internal Developer Platform on AWS // 13

© Copyright 2025 PlatCo Group

Wöhlertstraße 12-13, 10115 Berlin, Germany

Phone: +49 30 6293-8516

228 East 45th Street, Suite 9E,

New York, NY 10017

3rd Floor, 1 Ashley Road

Altrincham, Cheshire WA14 2DT

United Kingdom

E-mail: info@platco-group.com

Website: https://platco-group.com

CEO: Kaspar von Grünberg

Registered at Amtsgericht Charlottenburg, Berlin: HRB 262650

VAT-ID according to §27a UStG: DE367439464

Responsible for the content of humanitec.com ref. § 55 II RStV: Kaspar von Grünberg

PlatCo GmbH

PlatCo Inc

PlatCo Ltd

Imprint

https://platco-group.com

