
Platform as a Product:
the key to platform
engineering success

This short whitepaper is aimed at defining one of the foundational concepts
in platform engineering, Platform as a Product. We’ll go over what it means
and why it’s so important to our emergent discipline. We’ll also discuss the
main challenges in adopting a Platform as a Product approach and look at
best practices distilled from working with 100s of platform engineering teams.

02
P L A T F O R M A S A P R O D U C T : T H E K E Y T O P L A T F O R M E N G I N E E R I N G S U C C E S S
Introduction

What is Platform as a Product and why does it matter
Let’s start with a definition. Platform as a Product refers to building the end result of a
platform engineering initiative, an Internal Developer Platform (IDP), as a product. This means
there’s a dedicated product team (the platform team) that follows established product
management principles and, crucially, treats developers as their internal customers. This
platform team would be responsible for building tight feedback loops across the different
application development teams to ensure the IDP is solving their challenges and their major
pain points.

The platform should abstract the complexity of the underlying infrastructure stack, while at
the same time providing developers with the right amount of context they need to do their job.
In order to strike this delicate balance it’s essential for the platform team to listen closely to
developers and gain an intimate understanding of the problems they are facing.

To better understand this, a helpful analogy is seeing the platform team as a startup that’s
developing a product (and a respective go-to-market motion). Imagine this hypothetical
startup’ product has a total addressable market (TAM) that is equal to all the application
developers in the engineering organization. Similar to a startup, the platform team will launch
a V1 of the platform (a Minimum Viable Platform, or MVP), then iterate on it continuously based
on the feedback of its users (and customers) - the developers. The platform team is not only
responsible for developing the IDP but also for marketing it internally, progressively gaining
support from developers as well as other key stakeholders (e.g. architects, infrastructure and
operations, security, executives, etc.). In larger enterprises, there might be multiple platform
initiatives and respective teams vying to conquer the engineering org’s TAM by marketing their
own IDP solutions.

03 What is Platform as a Product and why does it matter
P L A T F O R M A S A P R O D U C T : T H E K E Y T O P L A T F O R M E N G I N E E R I N G S U C C E S S

For engineers especially with Infrastructure and Operations or
DevOps background this might require a significant mindset shift!

https://humanitec.com/minimum-viable-platform-mvp

This customer-centric focus is an important change from the traditional approach of
infrastructure and DevOps engineers (or SREs, Cloud Ops, etc.), who have historically been
focused on adding and maintaining infrastructure, “teaching” developers how to use it for
their needs best. This approach doesn’t scale and leads to developers being frustrated and
overwhelmed by the increasing complexity of their enterprise toolchains, waiting on
operations colleagues to provide them with the resources (e.g. DBs, environments) that they
need to do their job. The flip side of that is ops teams becoming a bottleneck as they fail to
deal with the growing backlog of TicketOps.

In contrast to this, platform engineers glue the tech and tools of an enterprise into
opinionated, predefined golden paths that enable developer self-service and reduce
cognitive load on the individual contributor. They build an Internal Developer Platform as a
product, pre-packaging the underlying infrastructure in a self-serviceable layer that drives
both automation and standardization across all workflows and teams. Unlike their
predecessors, they don’t look at the platform as a “one and done” project that has a beginning
and an end. Platform teams continuously iterate on the IDP features to ensure growing
stakeholder buy-in and developer adoption.

Platform as a Product is essential to provide an Internal Developer Platform that lets
developers move faster without breaking things (i.e. staying compliant and following security
best practices). This is what ultimately drives down time to market for the entire organization.

04
E P H E M E R A L E N V I R O N M E N T S
What are the benefits of ephemeral environments?

05

Key challenges
Hopefully it’s now clear why a product mindset is essential for a successful platform
engineering initiative. However, there are important challenges to implementing a proper
Platform as a Product approach. Let’s take a look at the main ones.

There are not enough good product managers (PMs) who have the experience to build such
complex products catering to the needs of so many different stakeholders. At the same time,
most companies hesitate to put their best technical product managers on platform topics.
Although leveraging your best PM talent for the IDP buildout and rollout might actually be the
highest ROI option, many organizations prefer to allocate them to customer-facing products,
while the platform is treated as a cost center.

Shortage of product management talent

Upskilling with courses like the first-ever official Platform
Engineering community course, ‘Platform Engineering Fundamentals,’
which focuses on key concepts such as Platform as a Product and
helps you evangelize them to both your platform team and the broader
engineering organization.

WHAT CAN HELP?

Key challenges
P L A T F O R M A S A P R O D U C T : T H E K E Y T O P L A T F O R M E N G I N E E R I N G S U C C E S S

Product management is a tricky balancing act and it only gets trickier when it comes to
platform product management. While customer-facing products benefit from the most direct
feedback there is (sales), internal products such as IDPs are affected by more complex
dynamics that go beyond simple supply and demand and often include a higher degree of
internal politics. Who decides how to build the platform, developers or the CIO? It’s not always
as clear as it should be.

Politics

https://platformengineering.org/fundamentals

We mentioned the importance of tight feedback loops between platform teams and
developers. That often means relying on one of the pillars of good product management: user
research. An easy trap to fall into, however, is interviewing developers and then going on to
build exactly what they said they wanted, just to have the frustrating experience of no
platform adoption right after. How’s that possible? Didn’t I give them exactly what they
asked for?

Listening too closely

06 Key challenges
P L A T F O R M A S A P R O D U C T : T H E K E Y T O P L A T F O R M E N G I N E E R I N G S U C C E S S

Doing user research is not about building what developers ask you. It’s about identifying and
understanding their pain points and coming up with solutions on a higher abstraction level.
Just remind yourself of the famous Henry Ford line: “If I’d asked customers what they wanted,
they would have told me, ‘A faster horse!’” Source: Walter Isaacson, HBR

For the sake of this whitepaper’s brevity, we won’t go into detail on all of the many challenges
(we’d rather focus on some of the solutions and best practices, see next section👇), but here
are some other worthy mentions including:

To address these and other challenges, we have collected 10 best practices, distilled from
looking at how top-performing engineering organizations and their respective platform teams
drive successful platform engineering initiatives.

And many more

07

The fact that platform engineering means innovation and change, and most people (and
organizations) are naturally averse to change.

Platform engineering initiatives touch so many different parts of your organization and
the workflows of virtually every stakeholder. Platform Product Managers (PPMs) thus
need to be able to navigate this complexity and face the daunting task of needing to
bring everyone on this journey.

Ending up with a huge feature backlog for your platform and a foggy vision for your
product roadmap (a classic of product management).

Measuring the wrong metrics e.g. lagging vs leading indicators, therefore focusing on
optimizing the wrong things.

Key challenges
P L A T F O R M A S A P R O D U C T : T H E K E Y T O P L A T F O R M E N G I N E E R I N G S U C C E S S

https://hbr.org/2012/04/the-real-leadership-lessons-of-steve-jobs

01

02

03

04

05

08

10 proven best practices

The market reached a maturity level where it doesn’t make sense anymore to
build everything from scratch. You should make a business case and do your ROI
calculations as early as possible. According to our DevOps Benchmarking Study 2023,
the best-performing platform engineering teams blend OSS with commercial vendor
offerings but do not build everything from scratch. Check the platform tooling
landscape for inspiration.

With a three-tier architecture (presentation, application, data): start building from
the backend; do not simply put a developer portal as a presentation layer on top of
your existing setup and build additional logic into it. Build the house first, then the
front door.

Consider code as the single source of truth which helps maintain transparency,
increase reliability, and simplify maintenance. An IDP that’s code-first at its core allows
for disaster recovery, versioning, and structured product development principles. This
does not exclude further interface offerings such as a UI (portal), CLI, or API.

Creating golden paths that provide best practice guidance and recommended
approaches helps lower cognitive load and improve security and standardization. IDPs
that apply smartly layered abstractions give developers the choice to follow the golden
paths and be free to leave or change lower-level configs if the security posture allows.

Do not try to please everyone. To adapt to different situations, meet diverse needs,
and benefit from evolving technologies, staying open-minded is key. But your platform
design should not try to cover every technology on earth or convince every developer in
a user base. Do not assume that you will be able to please 100% of developers. Instead,
consider achieving 80% a great win.

Build vs. buy vs blend

Apply well established architecture patterns

Everything as code

Build golden paths over cages

Take an 80/20 attitude to platforming

10 proven best practices
P L A T F O R M A S A P R O D U C T : T H E K E Y T O P L A T F O R M E N G I N E E R I N G S U C C E S S

https://humanitec.com/whitepapers/devops-benchmarking-study-2023
https://platformengineering.org/platform-tooling
https://platformengineering.org/platform-tooling
https://platformengineering.org/blog/what-to-build-first-the-house-or-the-front-door
https://platformengineering.org/blog/what-to-build-first-the-house-or-the-front-door

09
P L A T F O R M A S A P R O D U C T : T H E K E Y T O P L A T F O R M E N G I N E E R I N G S U C C E S S
10 proven best practices

06

07

08

09

10

To ensure adoption, give developers the freedom to use the interfaces they’re most
comfortable with and that best meet their needs. Provide the option to use an OSS
workload specification like Score, a portal (GUI), CLI, or API.

To get buy in, implement security best practices from the get-go. If the V1 of your
platform doesn’t fulfill security and compliance requirements and if there is no proof
that the platform will even support ensuring security and compliance by design,
security teams will veto and your platform initiative is dead before it could even
properly start.

Measure success with hard numbers to support informed decisions and generate
stakeholder buy-in. Choose metrics wisely, considering both leading (e.g., automation
and complexity scores) and lagging indicators (e.g., DORA metrics). Track leading
indicators in non-production environments early on. Remember to include NPS scores
for developer satisfaction, as well as stability metrics, SLOs, and SLAs.

Make sure all stakeholders have a seat (besides the developers - your customers).
From security to compliance and legal teams, from architects to I&O teams, and
important for the funding of your platform engineering initiative: executives. Make
sure you build a platform team where important stakeholders are represented by
heralds and the team goals are aligned with those of your stakeholders.

If the platform is not used, it is dead. This is about internal marketing/evangelism.
Identify the right first team to onboard and make them advocates of your platform
They are essential for platform success and developer adoption.

Leave platform interface choice to the developer

Security from scratch

Measure from the beginning

Gain stakeholder buy-in

Think about adoption from the first day

https://score.dev/
https://platformengineering.org/blog/how-to-build-your-platform-engineering-team
https://www.youtube.com/watch?v=wWW_lDUKnf0

How to get started
You might be sold on the importance of Platform as a Product and eager to become a best
practice platform engineering team, but the question lingers: how do you even get started
building your Internal Developer Platform as a product?

Here again, we can draw from well-established best practices in product management:

Our Platform Architects are available to help you design and implement your MVP. Our
Customer Success Managers can support you with making a strong business case. If you
want to take the next step in your platform engineering, contact us.

Leverage existing blueprints, use for example our reference architectures to design your
target platform.

However, don’t spend months designing and planning for a full-blown enterprise-grade
IDP in all its parts and with a full rollout.

Instead, start small and optimize for quick iteration. Start with a Minimum Viable
Platform and follow a structured approach to gain stakeholder buy-in and adoption.

Make a strong business case and walk your management through it. We are happy to help.

10 How to get started
P L A T F O R M A S A P R O D U C T : T H E K E Y T O P L A T F O R M E N G I N E E R I N G S U C C E S S

https://humanitec.com/talk-to-platform-architect-mvp
https://humanitec.com/reference-architectures
https://humanitec.com/minimum-viable-platform-mvp
https://humanitec.com/minimum-viable-platform-mvp

11 Imprint
P L A T F O R M A S A P R O D U C T : T H E K E Y T O P L A T F O R M E N G I N E E R I N G S U C C E S S

© Copyright 2024 PlatCo GmbH

Wöhlertstraße 12-13, 10115 Berlin, Germany
Phone: +49 30 6293-8516

228 East 45th Street, Suite 9E,
New York, NY 10017

3rd Floor, 1 Ashley Road
Altrincham, Cheshire WA14 2DT
United Kingdom

E-mail: info@humanitec.com
Website: https://www.humanitec.com

CEO: Kaspar von Grünberg
Registered at Amtsgericht Charlottenburg, Berlin: HRB 196818 B
VAT-ID according to §27a UStG: DE318212407
Responsible for the content of humanitec.com ref. § 55 II RStV: Kaspar von Grünberg

PlatCo GmbH (dba Humanitec)

Humanitec Inc

Humanitec Ltd

