
Building a dynamic
IDP: A reference
architecture for
Azure-focused setups

Agenda

2

“Making off” the ref architecture 01

Problems we aim to solve 02

Design Principles 03

Design 04

End to end walk-through 05

And buzzwords turn into reality - ❤magic❤;

Let’s explore some “golden paths”!

Making off the ref architecture

4

100s
Of setups used as a basis

for this ref architecture

🔸 Years of bullshit have to end. Platform
engineering is becoming a zoo of
buzzwords.

🔸 We had a ton of data but not enough to
make this representative.

🔸 McKinsey took on the task and we
contributed.

🔸 It’s started with a ref architecture on
AWS and GCP. Today we are discussing
the Azure one.

Problems we want to solve

5

Overwhelmed
Long lead times

Ticket ops, high cost of maintenance

Overwhelmed developers that slow
down

Waiting times & missing self-service

Overdelivered

Low lead time

High degree of standardization

Separation of concern

Self-service

9/10 operations or DevOps teams are wasting time because of a
unstructured tooling setup.

Treat your platform as a product, build an Internal
Developer Platform.

If you get the fundamentals right, the benefits walk in

6

Dynamic
Configuration
Management

Drives
standardization
by design

Enables:
● Dev self-service
● Elimination of

“ticket ops”
● Reduction of

config files
● Golden Paths
● Low cognitive load

Slash
your
lead
time!

Building a dynamic IDP: A reference architecture for AWS-focused setups

Silent legends

7

Stephan Schneider

APV at McKinsey focussed on
engineering excellence and

developer experience.

Mike Gatto Marco Marulli

Senior Platform Engineer
focussed on the AWS

ecosystem.

Senior Platform Engineer
focussed on the GCP

ecosystem.

8

What is a ref
architecture?
A standard pattern of most commonly
used architectural designs of different
tools to deliver software. Combined by
platform engineers into Internal
Developer Platform. Ref architecture
comes as:

🔶 Visual flow diagrams
🔶 Packaged as code
🔶 Whitepapers
🔶 Tutorials

Design principles

9

Golden paths over cages Standardization by design

Dynamic over static configs Code first / interface choice

Pull developers, do not push them. If you
abstract, never take context.

By using the platform, the degree of
standardization stays constant or
increases.

The platform should be able to dynamically
create configs with every deployment.

Code should be the single source of truth.
Users should have interface choice.

10

Developer Control Plane

11

Interface choice - and it depends!

12

Activity type Predominant interface choice

Deploy Terminal/IDE

Change configuration Code: Workload specification (Score)

Add/remove resource Code: Workload specification (Score)

Roll back/Diff Orchestrator API/CLI/UI

Configure resource in detail Code: IaC

Spin up a new environment Orchestrator API/CLI/UI

See logs/error messages Orchestrator API/CLI/UI

Search service catalog Portal/Service Catalog

Inner source use case Portal/Service Catalog

Scaffolding Use case Portal/Service Catalog or templating in VCS

Workload specification - a centerpiece

13

Integration & Delivery Plane

14

Resource Plane

15

Monitoring & Logging Plane

16

Security Plane

17

18

Git-push
How this works

Baseline
Configurations

Score file and
workload name

Developers

Platform
Engineers

Application deployedCI CD

Read
Match: env type = staging

Create

Deploy

https://github.com/williamoverton/score-simple-example/tree/main
https://github.com/williamoverton/score-simple-example/tree/main

19

Golden path: deploy to dev (dev perspective)

context:
env=development

Dev
Request

Platform
response

✓ Read workload specification

✓ Match resource definitions

✓ Create app configs, configure resources

✓ Deploy

➔ EKS cluster configured

➔ RDS credentials injected

➔ S3 credentials injected

➔ Route 53 DNS configured

20

Golden path: create new environment (dev perspective)

context:
env=ephemeral

Dev
Request

Platform
response

✓ Read workload specification

✓ Match resource definitions

✓ Create app configs, configure resources

✓ Deploy

➔ Create new namespace

➔ Create RDS

➔ Create S3

➔ Create DNS entry

21

Golden path: Update Postgres from V 14 -> 15 (Platform Engineer)

Platform
Request

Platform
response

✓ Read workload specification

✓ Match resource definitions

✓ Create app configs, configure resources

✓ Deploy

➔ Postgres version update rolled out

across all dependent services.

What services depend on the
resource definition?

Update resource definition

22

Off the golden path: add ArangoDB

Platform
response

✓ Read workload specification

✓ Match resource definitions

✓ Create app configs, configure resources

✓ Deploy

I need ArangoDB for
my workload but
there is no default.

I add a resource
definition

ArangoDB is available
for reuse by the next
user. Standardization
by design!

Dev
Request

23

Platforming is about structuring repos (more than
anything). If your setup is well platformed (following this
ref architecture), this is how your repo structure looks:

Workload
● Workload source code
● Workload spec (Score)
● Docker file
● Pipeline YAML

Resource
Definitions

Resource
Drivers/IaC
(static and
dynamic)

Developer owned

Workload
Profiles

Automations/
compliance

Platform Engineering owned

What now? I’d love to give you the repo but
it’s not open source yet and not documented.

We’ll share a whitepaper for more info. The
packaged version is ready, if you’re interested

hit me up, I’ll see what I can do.

